APPLICATION

AMSCO® Evolution® Steam Sterilizers are configured for prevacuum sterilization of heat- and moisture-stable materials used in healthcare facilities. These units can be equipped with prevacuum, Steam Flush Pressure Pulse (SFPP), gravity, liquid, and daily air removal test cycles.

DESCRIPTION

AMSCO Evolution Steam Sterilizers are equipped with the latest features in both state-of-the-art technology and ease of use.

Primary Product Features

- **Hinged door**: door may be hinged on either left side or right side.
- **Powered Door Options**: door travels horizontally right to left to open.
- **All plumbing components** are mounted to a free-standing, modular rack (stand). The stand connects to the core sterilizer assembly during installation.
- **An advanced Allen-Bradley™ PLC control system** employs user-friendly interface screens, with enhanced graphics.
- **7” (178 mm) color touch screen display.**
- **Thermal printer**
- **Standard communication interface** with most PC-compatible peripheral accessories.

Selections Checked Below Apply To This Equipment

TYPE
- ❑ Prevacuum
- ❑ Steam Flush Pressure Pulse (SFPP)

MODEL NUMBER/SIZE
- ❑ HC900 / 26 x 37.5 x 42” (660 x 950 x 1067 mm)
- ❑ HC1200 / 26 x 37.5 x 54” (660 x 950 x 1372 mm)
- ❑ HC1500 / 26 x 37.5 x 66” (660 x 950 x 1676 mm)

STEAM SOURCE
- ❑ Facility Steam
- ❑ Integral Steam Generator (72 kW)
 - ❑ Carbon Steel
 - ❑ Stainless Steel
 - ❑ 208V, 50/60 Hz, 3-Phase, 203 A
 - ❑ 240V, 50/60 Hz, 3-Phase, 176 A
 - ❑ 480V, 50/60 Hz, 3-Phase, 89 A

STEAM PIPING
- ❑ Copper/Brass
- ❑ Stainless Steel
- ❑ Optional Right-hand Piping

DOOR CONFIGURATION
- ❑ Single-Door (A - B, following graphic)
 - ❑ Hinged Door
 - ❑ Left-Hand (A)
 - ❑ Right Hand (B)
 - ❑ Horizontal-Sliding
- ❑ Double-Door (C, D, E, F)
 - ❑ Operating End hinge position listed first, Non-operating End hinge listed second.

SINGLE-DOOR MOUNTING
- ❑ Cabinet Enclosed/Freestanding
- ❑ Recessed

DOUBLE-DOOR MOUNTING (RECESSED)
- ❑ Through One Wall
- ❑ Through Two Walls

ACCESSORIES
- ❑ Loading Car
- ❑ Transfer Carriage
- ❑ Chamber Track Assembly
- ❑ Single Door
- ❑ Double Door
- ❑ Loading Car, Transfer Carriage and Track Assembly
- ❑ Single Door
- ❑ Double Door
- ❑ Chamber Rack and Two Shelves
- ❑ Single Door
- ❑ Double Door
- ❑ Extra Shelf
- ❑ 42” Chamber Length
- ❑ Seismic Tie-Down Kit
- ❑ ALUS (Automatic Load/Unload System)

REMOTE MONITORING
- ❑ ProConnect® Response Center (Remote Monitoring, Priority Technical Support, Customer Care Center Access, Equipment Performance Reports). Available in U.S. and Canada only. (GP09160)

WATER CONSERVATION OPTIONS
- ❑ STERI-GREEN Water Re-Circulating System
 - ❑ (UE0000000000004)
- ❑ STERI-GREEN PLUS Chilled Water Loop Re-Circulating System
 - ❑ (UE0000000000002)

Notes:
1. External Supplied Steam (Facility Steam/stand-alone Steam Generator)
2. Left-hand piping is standard
3. Direction of door movement is right to left as viewed from sterilizer operating end and left to right as viewed from non-operating end.

1. The Allen-Bradley brand-name is owned by Rockwell Automation, Inc.
Pneumatic valves current readings. provides printed record of all calibration data for verification to accessible through the touch screen displays. Control system software calibration exhaust control, and require little or no maintenance. assembly are mounted to a Principle piping components when necessary.

STANDARDS

Each sterilizer meets applicable requirements of the following listings and standards, and carries the appropriate symbols:

- ASME Code, Section VIII, Division 1 for unfired pressure vessels. The pressure vessel is so stamped; ASME Form U-1 is furnished. Shell and door are constructed to withstand working pressure of 45 psig (3.1 bar).
- Underwriters Laboratory (UL) Standard 61010-1 as certified by Intertek Testing services.
- Canadian Standards Association (CSA) Standard C22.2, No. 1010 as certified by Intertek Testing services.
- ANSI/AAMI ST8:2001– American National Standards Institute/Association for the Advancement of Medical Instrumentation, Standard 8 for hospital steam sterilizers. All standard sterilization cycles are programmed into the sterilizer control and validated to this standard.
- CRN (Canadian Registration Number) – design submitted for registration under The Boiler and Pressure Vessel Act to state compliance with the Act, Regulations, and relevant codes and standards.

FEATURES

26 x 37.5" (660 x 950 mm) Chamber Cross-section sized to allow for efficient, high-volume processing of sterilization containers, trays and packs.

Fast-operating, low-effort manual door lock mechanism (hinged door models) allows door to be locked or unlocked using a single 30° handle motion.

Power Door operates quietly, and consists of a motor-driven cable and pulley mechanism. Vertical- and horizontal-sliding door is controlled from control panel push buttons. Double door configurations are supplied with controls at both ends of the sterilizer to help prevent the possibility of cross-contamination.

Software calibration is performed in the Service Mode, accessible through the touch screen displays. Control system provides printed record of all calibration data for verification to current readings.

Pneumatic valves are fitted in piping for steam, water and exhaust control, and require little or no maintenance.

Principle piping components and the primary control assembly are mounted to a separate, modular support rack (plumbing stand). The plumbing stand connects during installation to core chamber and frame assembly, allowing for increased access for service and maintenance procedures when necessary.

ProConnect® Technical Support Services - Maximize operational efficiencies with secure, internet-based, real-time equipment monitoring. Data from your equipment is used by STERIS to provide pro-active Customer alert notifications, technical support, and predictive maintenance. Online parts ordering, equipment performance dashboards, and online service scheduling at steris.com is also available. (ProConnect Technical Support Services is available in U.S. and Canada only.) Refer to Tech Data Sheet SD983, ProConnect Technical Support Services, for details.

UTILITIES CONSERVATION FEATURES

Electronic water saving control monitors and minimizes the amount of water used in condensing the exhausted chamber steam and condensate. The control includes a resistance temperature detector (RTD).

Automatic utilities start-up/shutdown permits utilities conservation. Shutdown may be programmed to activate at the end of any designated cycle or time of day. When activated, the control system automatically shuts off all utility valves, conserving steam and water usage. Sterilizer utilities can be restarted either by programmed time or manual operation. A different shutdown and restart time can be programmed for each day.

Insulation sleeve is fitted around exterior of the sterilizer vessel to conserve heat and limit heat loss to the surrounding environment. The sleeve is sealed and held in place by hook- and-loop closures. Insulation is asbestos-free and chloride-free, silicone impregnated, oil- and water-resistant fiberglass.

Two-stage vacuum pump is supplied on all units to effectively pull chamber to specified vacuum levels, reduce cycle time by shortening conditioning and exhaust times; as well as reduce water consumption.

STERI-GREEN Water Re-Circulating System option uses up to 40% less water per cycle than units without a re-circulating system. Water consumptions are based on the water temperature, pressure and flows listed in the consumption table. Sterilizer water consumptions and vacuum efficiency may vary based on facility feed water tolerances. This system recovers water to a reservoir to be recycled and reused for next cycle.

STERI-GREEN PLUS Chilled Water Loop System option uses 99% less water per cycle than standard units. This system maximizes water savings by connecting into facility’s chilled water system in a closed loop.

PROCESSING CYCLES

All standard sterilization cycles are programmed into the sterilizer control and validated to AAMI/ANSI ST8.

IMPORTANT: Applicable cycles have been validated to satisfy the requirements outlined below. If cycle parameters (sterilize time, dry time, temperature) other than those listed are required, it is the responsibility of the healthcare facility to consult and follow the device manufacturer’s written instructions.

Dry Times for Prevacuum and SFPP are based upon maximum load.

- four full shelves of 25 lb (11 kg) instrument trays

Prevacuum configuration sterilizers are factory programmed with the following cycles: Prevacuum, Gravity, Liquid, and Test Cycles. Prevacuum cycles are intended for efficient, high-volume processing of heat- and moisture-stable materials, such as fabrics and wrapped hard goods. This process incorporates a series of vacuum pulses followed by pressure pulses to condition the porous load prior to sterilization. See cycle descriptions below for more details.
Default Prevac Cycles

- **270°F (132°C) Prevacuum Cycle**: For sterilizing double-wrapped instrument trays and fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 4 minutes
 - Dry time: 30 minutes

- **270°F (132°C) Prevacuum Cycle**: For sterilizing single fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 4 minutes
 - Dry time: 5 minutes

- **275°F (135°C) Prevacuum Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 275°F (135°C)
 - Sterilize time: 3 minutes
 - Dry time: 30 minutes

- **275°F (135°C) Gravity Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 275°F (135°C)
 - Sterilize time: 3 minutes
 - Dry time: 30 minutes

- **250°F (121°C) Gravity Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 250°F (121°C)
 - Sterilize time: 30 minutes
 - Dry time: 15 minutes

- **270°F (132°C) Gravity Cycle**: For sterilizing single fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 4 minutes
 - Dry time: 5 minutes

- **270°F (132°C) Gravity Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 15 minutes
 - Dry time: 30 minutes

- **270°F (132°C) Gravity Cycle**: For sterilizing fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 25 minutes
 - Dry time: 15 minutes

- **Liquid Cycle**: This cycle is used for sterilizing liquids in borosilicate containers with vented closures.
 - Sterilize temperature: 250°F (121°C)
 - Factory programmed sterilize time: 45 minutes
 - Dry time: not applicable

IMPORTANT: It is inappropriate for a healthcare facility to sterilize liquids for direct contact with patients.

Steam Flush Pressure Pulse (SFPP) configuration sterilizers are factory programmed with the following cycles: SFPP, Prevacuum, Gravity, Liquid and Test Cycles. SFPP cycles are intended for efficient, high volume processing of double wrapped instrument trays and fabric packs. This dynamic air removal cycle incorporates a series of steam flushes and pressure pulses at pressures above atmospheric levels to condition load prior to sterilization. No vacuum is drawn during conditioning, therefore, no Bowie-Dick test is required.

Prevacuum cycles are also intended for efficient, high volume processing of heat- and moisture-stable materials, such as fabrics and wrapped hard goods. This process incorporates a series of vacuum pulses followed by pressure pulses to condition the porous load prior to sterilization.

NOTE: Prevac and SFPP cycles may be used interchangeably.

See cycle descriptions below for more details:

Default SFPP Cycles

- **270°F (132°C) SFPP Cycle**: For sterilizing double-wrapped instrument trays and fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 4 minutes
 - Dry time: 30 minutes

- **275°F (135°C) SFPP Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 275°F (135°C)
 - Sterilize time: 3 minutes
 - Dry time: 30 minutes

- **270°F (132°C) SFPP Cycle**: For sterilizing single fabric packs.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 4 minutes
 - Dry time: 5 minutes

- **270°F (132°C) SFPP Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 15 minutes
 - Dry time: 30 minutes

- **270°F (132°C) SFPP Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 15 minutes
 - Dry time: 30 minutes

- **270°F (132°C) SFPP Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 15 minutes
 - Dry time: 30 minutes

- **250°F (121°C) Gravity Cycle**: For sterilizing fabric packs.
 - Sterilize temperature: 250°F (121°C)
 - Sterilize time: 30 minutes
 - Dry time: 15 minutes

- **270°F (132°C) Gravity Cycle**: For sterilizing double-wrapped instrument trays.
 - Sterilize temperature: 270°F (132°C)
 - Sterilize time: 15 minutes
 - Dry time: 30 minutes

- **Liquid Cycle**: This cycle is used for sterilizing liquids in borosilicate containers with vented closures.
 - Sterilize temperature: 250°F (121°C)
 - Factory programmed sterilize time: 45 minutes
 - Dry time: not applicable

IMPORTANT: It is inappropriate for a healthcare facility to sterilize liquids for direct contact with patients.
TESTING CYCLES

- **Warm-up Cycle**: This cycle is used to warm chamber to operating temperature prior to performing a Bowie-Dick Test cycle (or other operating cycles).
- **Bowie-Dick Test Cycle**: This cycle is used for conducting Bowie-Dick tests. Recommended load is a Dart® testing apparatus from STERIS or a properly prepared Bowie-Dick test pack. Preprogrammed cycle parameters cannot be adjusted by the user.
 - Sterilize temperature: 270° (132°C)
 - Sterilize time: 3 minutes and 30 seconds
 - Dry time: 1 minute
- **Vacuum Leak Test**: This cycle is used for testing the vacuum integrity of the sterilizer piping. Sterilizer chamber must be empty while running this test cycle. All timing is preprogrammed and cannot be adjusted.

CONTROL SYSTEM

Design Features

The Allen-Bradley PLC control system monitors and controls all sterilizer operations and functions. The control system is factory-programmed with standard sterilizing cycles. Each cycle is adjustable to meet specific processing requirements. All operator-accessible control functions can be changed using the touch screen control.

IMPORTANT: If cycle parameters (sterilize time, dry time, temperature) other than those listed are required, it is the responsibility of the healthcare facility to consult and follow the device manufacturer’s written instructions.

Cycle values and operating features may be adjusted and verified prior to cycle operation. Cycle parameters are retained in control memory for repeated use.

Once cycle is started, cycles and cycle values cannot be changed until cycle is complete. If chamber temperature drops below set point during the exposure phase, the timer is set to stop and automatically reset once normal operating temperature is reached.

Critical control system components are housed within a sealed compartment to protect the components from moisture and heat generated during the sterilization process.

Operator interface control panel, consisting of a touch screen, is located on the operating (i.e., load or non-sterile) end of the sterilizer.

The operator interface consists of a color touch-screen. The display allows for control communications, graphics and excellent visibility in most environments. The display panel, in conjunction with the control, is used as the monitor for the operator. All sterilizer functions, including cycle initiation and cycle configuration, are operated by pressing the touch-sensitive areas on the display. Display indicates appropriate control buttons, operator prompts, and status messages necessary to assist in sterilizer operation. All displayed messages are complete phrases with no codes to be cross-referenced. Display also indicates any abnormal conditions that may exist either in or out of a cycle.

Thermal printer, located below touch screen, is a high-resolution (8 dots per mm) printer. It is fast and quiet, printing at 25 lines per minute on industrial grade thermal paper. The device provides an easy-to-read printed record of all pertinent cycle data on 2.25" (57 mm) wide paper. Data is automatically printed at the beginning and end of each cycle and at transition points during the cycle.

Three paper tape rolls are furnished with each unit. Printouts have a guaranteed lifetime of 25 years and are resistant from exposure to steam, alcohol, UV and visible light, oil, heat and water.

Non-operating end (NOE) control panel, on double-door sterilizers only, includes a touch sensitive screen identical to the operating end screen. Preprogrammed cycles can be started from the NOE control panel. Display concurrently shows the same information as the operating end screen display. Other controls located at the non-operating end include door control pushbuttons (if power door), jacket and chamber gauges and an emergency-stop button (if power door).

Cycle configuration is performed by accessing the Change Values menu through the operating end touch screen.

In addition to adjustment of cycle values, the following operating parameters can also be changed through the Machine Setup menu:

- **Time display and printout units** 24-hour or AM/PM.
- **End-of-cycle signals** and **alarm signals** have three adjustable volume levels available through the control and display panel.
- **Temperature display and printout units** Fahrenheit (°F) or Celsius (°C). Temperature is set, displayed, controlled and printed to the nearest 0.1°. Recalibration is not required when changing temperature units.
- **Pressure/vacuum display and printout units** psig/InHg or bar. Recalibration is not required when changing pressure units.

SAFETY FEATURES

Emergency stop button located on the front panel, below the sterilizer control touch pad (Power Door Units Only). When pressed, immediately shuts off all outputs on the sterilizer. A key is used to reset the switch.

Control lockout switch equipped on chamber door(s), senses when door seal is energized and tight against the door. Control prevents cycle from starting until the limit switch signal is received. If control loses appropriate signal during cycle, alarm activates, cycle aborts and chamber safely vents with a controlled exhaust.

Chamber float switch activates alarm, aborts cycle and safely vents chamber with a controlled exhaust if excessive condensate is detected in the vessel chamber.

Pressure relief valve limits the amount of pressure buildup so that the rated pressure in the vessel is not exceeded.

Power door safety feature causes door drive to slip if the sliding door encounters an obstruction during its movement.
CONSTRUCTION

Shell Assembly
Two fully fabricated Type 316L stainless-steel shells, welded one within the other, form the sterilizer vessel. Type 316L stainless-steel end frame(s) is welded to door end. On single door units, back of chamber is fitted with welded, 316L stainless-steel dished head.
Sterilizer vessel is ASME and PED rated at 45 psig (3.1 bar) and insulated. Vessel includes one 1" -NPT chamber port for Customer use.
Steam-supply opening inside the chamber is shielded by a stainless-steel baffle.

Chamber Door(s)
Door is constructed of Type 316L stainless steel. During cycle operation, door is sealed by a steam-activated door seal. Door seal is constructed of a special long-life rubber compound. When sterile cycle is complete, the seal retracts under vacuum into a machined groove in the sterilizer end frame. A proximity switch is used by the control to determine if door is closed. An additional seal pressure switch prevents inadvertent cycle initiation if door is not sealed.
The door assembly is equipped with a mechanical locking mechanism that ensures the door cannot be opened as long as the seal is intact and energized and more than 2 psig (0.14 bar) pressure is in the chamber.
The sterilizer door is fitted with a stainless-steel panel that insulates the operator from the chamber end frame, reducing the chance of accidental contact with a hot metal surface.

Chamber Drain System
Drain system is designed to prevent pollutants from entering into the water-supply system and sterilizer.
The automatic condensing system, consisting of a heat exchanger, converts chamber steam to condensate and disposes condensate to waste. Cooling water flow is regulated by the waste line RTD to minimize water usage. Water supply shutoff valve is located in the recessed area of the unit.

Vacuum System
Two-stage vacuum pump reduces chamber pressure during prevacuum and post-drying phases. Air is drawn from the chamber through the vacuum system. Following the dry phase, chamber vacuum is relieved to atmospheric pressure by admitting air through a bacteria-retentive filter.

Piping Rack (Plumbing Stand)
All piping is located on a modular plumbing rack (stand). Plumbing stand is located on left side (standard) of the sterilizer, but may be changed to right side (optional). Piping comes in copper/brass (standard), but is available in stainless-steel (optional).

Steam Source
Sterilizers are piped, valve and trapped to receive facility-supplied steam delivered at 50 to 80 psig (3.5 to 5.6 bar) dynamic. Standard steam piping is constructed of copper and brass and includes a shutoff valve and pressure regulator. (An optional, integral electric steam generator is also available.)
Options:
- Facility Steam
- Stand-alone steam generator
- Integral steam generator
 - carbon steel for standard copper-and-brass piping
 - stainless-steel for the optional stainless-steel piping (see following note)

NOTE: Reverse Osmosis (RO) or deionized (DI) water system required for stainless-steel piping system.

MOUNTING ARRANGEMENT
Sterilizers are arranged for either freestanding or recessed installation, as specified. Each sterilizer is height-adjustable.
Sterilizer subframe is equipped with a synthetic rubber gasket to ensure tight fit between the cabinet panels on freestanding units or between the front cabinet panel and wall partition on recessed units.
On freestanding units, stainless-steel side panels and a louvered top panel enclose the sterilizer body and piping.

ACCESSORIES

Material Handling Accessories include stainless-steel chamber tracks, loading cars and painted mild steel transfer carriages. Stainless-steel chamber rack and shelves are available for 42" (1067 mm) sterilizers. Extra shelves can be ordered separately. See separate product literature for details (SD890).

Optional Integral Steam Generator is constructed of 316L stainless steel or carbon steel. Generator is operated by sterilizer control system. (Refer to table on page 6 for engineering data and utilities specifications.)

ALUS (Automatic Load/Unload System) – The Automatic Load and Unload System is a premium accessory designed to save time and improve efficiencies, allowing staff to focus on other important tasks. Due to its heavy-duty construction, ALUS can handle loads of up to 500 lbs (226.8 kg). This load capacity makes ALUS a good fit in high volume facilities using large-chamber sterilizers.
- Automatically loads and unloads carts when cycle is complete
- Starts cycle automatically (with use of optional bar code reader)
- Load capacity of up to 500 lbs (226.8 kg)

Refer to Tech Data 10406222 for details pertaining to ALUS.

PREVENTIVE MAINTENANCE

A global network of skilled service specialists can provide periodic inspections and adjustments to help assure low-cost peak performance. STERIS representatives can provide information regarding annual maintenance agreements.

NOTES

1. Customer is responsible for backflow protection, if required.
2. Pipe sizes shown indicate terminal outlets only. Building service lines, provided by others, must supply the specified pressures and flow rates.
3. Disconnect switches (with OFF position lockout only; switches not supplied by STERIS) should be installed in electric supply lines near the equipment.
4. Access to the recessing area from the control end of the sterilizer is recommended.
5. Clearances shown are minimal for installing and servicing the equipment.
6. Depending on the loading equipment used, additional clearance is required:
7. If shelves are used, length of sterilizer plus 24" (610 mm) at each door (36" [914 mm] sterilizer, only).
8. If loading car and carriage will be used, twice the length of sterilizer at each door.
9. Floor drain should be provided within confines of sterilizer framework.
ENGINEERING DATA / UTILITY REQUIREMENTS

Drain
2" ODT drain terminal (Floor drain capacity must handle peak water consumption).

Electric
Control and Vacuum Pump:
- 208-240 Volt, 3-phase, 50/60 Hz, 12 Amps/phase. 16A circuit breaker recommended.
- 480 Volt, 3-phase, 50/60 Hz, 6 Amps/phase. 8A circuit breaker recommended.

Facility Steam
Size: Copper/Brass 3/4" NPT, Stainless Steel 1" Sanitary TRI-CLAMP® fitting.
Pressure: 50 to 80 psig (3.45 to 5.5 bar), dynamic, condensate free, and 97 to 100% vapor quality.

Consumption (270°F [132°C] Cycle):

<table>
<thead>
<tr>
<th>Model</th>
<th>Chamber Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liter</td>
</tr>
<tr>
<td>HC900</td>
<td>574.8</td>
</tr>
<tr>
<td>HC1200</td>
<td>764.6</td>
</tr>
<tr>
<td>HC1500</td>
<td>1,053.4</td>
</tr>
</tbody>
</table>

Feed Water
Size: 3/4" NPT.
Pressure: 20 to 50 psig (1.4 to 3.5 bar), dynamic.
Temperature: 59°F (15°C), maximum.
Peak Flow (all units): 13 gpm (49 Lpm)

Average Consumption:

<table>
<thead>
<tr>
<th>Water (Wt. per Load)</th>
<th>Standard Water Consumption</th>
<th>STERI-GREEN</th>
<th>STERI-GREEN PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Res-Circulating System</td>
<td>Chilled Water Loop System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gal (L) per cycle</td>
<td>gal/lb (L/kg)</td>
<td>gal (L) per cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 x 37.5 x 42</td>
<td>300 (136)</td>
<td>.310 (2.59)</td>
<td>.267 (2.23)</td>
</tr>
<tr>
<td>(660 x 950 x 1067)</td>
<td>93 (352)</td>
<td>80 (303)</td>
<td>.255 (2.13)</td>
</tr>
<tr>
<td>26 x 37.5 x 54</td>
<td>400 (181)</td>
<td>.300 (2.51)</td>
<td>102 (386)</td>
</tr>
<tr>
<td>(660 x 950 x 1372)</td>
<td>120 (454)</td>
<td>146 (553)</td>
<td>.292 (2.44)</td>
</tr>
<tr>
<td>26 x 37.5 x 66</td>
<td>500 (227)</td>
<td>.292 (2.44)</td>
<td>146 (553)</td>
</tr>
<tr>
<td>(660 x 950 x 1676)</td>
<td>146 (553)</td>
<td>.292 (2.44)</td>
<td>146 (553)</td>
</tr>
</tbody>
</table>

Compressed Air
1/4" NPT 80-100 psig (5.5 to 6.9 bar psig), oil free, dehumidified, 3 cfm.

Optional Integral Steam Generator
- Water: 3/4" NPT; hot water temperature 140°F (60°C). Generator Drain: 3/4" NPT
- Electric:
 - 208 Volt, 50/60Hz, 203 Amp, 3-phase minimum. 300A circuit breaker recommended.
 - 240 Volt, 50/60Hz, 176 Amp, 3-phase minimum. 225A circuit breaker recommended.
 - 480 Volt, 50/60Hz, 89 Amp, 3-phase minimum. 125A circuit breaker recommended.
- Boiler Weight (Empty): 595 lb (270 kg)
- Boiler Weight (Operating): 800 lb (363 kg)

Requirements for ProConnect Technical Support Services
Refer to Tech Data Sheet SD983, ProConnect Technical Support Services. (Available in U.S. and Canada only.)

Sterilizer Chilled Water
- Supply Temperature: 41 to 45°F (5 to 7°C)
- Piping: 1" NPT
- Pressure (minimum): 40 psig (2.75 bar)
- Flow: 21 gpm (79.5 lpm)

*TRI-CLAMP® is a registered trademark of ALFA LAVAL INC.

CUSTOMER IS RESPONSIBLE FOR COMPLIANCE WITH APPLICABLE LOCAL AND NATIONAL CODES AND REGULATIONS
In the following table chamber lengths are given within brackets following the Equipment Drawing Title.

<table>
<thead>
<tr>
<th>Equipment Drawing Number</th>
<th>Equipment Drawing Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>62941-091</td>
<td>General Notes – Applicable to Sterilizer Equipment Drawings</td>
</tr>
<tr>
<td>129391-331</td>
<td>26 x 37.5 Evolution Steam Sterilizer Single Door, Hinged, Steam Heat</td>
</tr>
<tr>
<td>129391-332</td>
<td>26 x 37.5 Evolution Steam Sterilizer Single (Hinge) Door with Steam Generator</td>
</tr>
<tr>
<td>129391-333</td>
<td>26 x 37.5 Evolution Steam Sterilizer Double Door, Hinged, Steam Heat</td>
</tr>
<tr>
<td>129391-334</td>
<td>26 x 37.5 Evolution Steam Sterilizer Double (Hinge) Doors Electric Heat with Steam Generator</td>
</tr>
<tr>
<td>129391-335</td>
<td>26 x 37.5 Evolution Steam Sterilizer Single Door, Sliding, Steam Heat</td>
</tr>
<tr>
<td>129391-336</td>
<td>26 x 37.5 Evolution Steam Sterilizer Single (Sliding) Door, Electric Heat with Steam Generator</td>
</tr>
<tr>
<td>129391-337</td>
<td>26 x 37.5 Evolution Steam Sterilizer Double Door, Sliding, Steam Heat</td>
</tr>
<tr>
<td>129391-338</td>
<td>26 x 37.5 Evolution Steam Sterilizer Double (Sliding) Doors Electric Heat with Steam Generator</td>
</tr>
<tr>
<td>129395-029</td>
<td>26 X 37.5 Evolution Hinge Door Steam Sterilizer With Chilled Water Option Steam Heat Or Electric Heat With Steam Generator</td>
</tr>
<tr>
<td>129395-030</td>
<td>26 X 37.5 Evolution Sliding Door Steam Sterilizer With Chilled Water Option Steam Heat Or Electric Heat With Steam Generator</td>
</tr>
<tr>
<td>129395-034</td>
<td>26 X 37.5 Evolution Hinge Door Steam Sterilizer With Green Tank Option Steam Heat Or Electric Heat With Steam Generator</td>
</tr>
<tr>
<td>129395-035</td>
<td>26 X 37.5 Evolution Sliding Door Steam Sterilizer With Green Tank Option Steam Heat Or Electric Heat With Steam Generator</td>
</tr>
</tbody>
</table>

Refer to the Following Equipment Drawings for Installation Details